作业帮 > 数学 > 作业

一道判断级数敛散性题

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 17:09:37
一道判断级数敛散性题

一道判断级数敛散性题
条件收敛
先证不是绝对收敛
假设绝对收敛

级数ln n/(n+2012)收敛
显然当n=1时,原式=0
函数单调性可知 ln n>=ln 2
ln n/(n+2012)>=ln 2/(n+2012)>=ln2*级数1/(n+2012)=ln2*(级数1/n-(1/1+1/2+...+1/2013))
因为级数1/n发散,(1/1+1/2+...+1/2013)有界
所以由比较判别法,原级数发散.
下证其条件收敛,用莱布尼兹判别法
首先令
f(x)=ln x/(x+2012),x>=2
f'(x)=[1/x*(x+2012)-lnx*1]/(x+2012)^2
=(2012/x+1-lnx)/(x+2012)^2
显然当x>2012后,2012/x+1-lnx