一道奇怪的向量题当m、n(m、n属于实数)满足()时,才能使a、b、c的终点在一条直线上(设O为a、b、c的公共始点,其
一道奇怪的向量题当m、n(m、n属于实数)满足()时,才能使a、b、c的终点在一条直线上(设O为a、b、c的公共始点,其
已知 向量c=m向量a+n向量b 设向量abc有共同起点 要使向量abc的终点在一条直线上 m n需满足的条件是什么
已知A,B,C,P为平面内四点,求证:“A,B,C三点在一条直线上”的充要条件是“存在一对实数m,n,使向量PC=m(向
向量三点共线问题设A,B,C三点满足向量OC=m*向量OA+n*向量OB,其中O为任意一点(包括线上),m+n=1 是
已知平面内三点A、B、C三点在一条直线上,向量OA=(-2,m),向量OB=(n,1),向量OC=(
已知向量a、b不共线,a、b、c有共同的起点,且c=ma+nb,如果a、b、c的终点在同一条直线上,证明:m+n=1.
设集合M={a,b} N={c,d}.定义M与N的一个运算*为:M*N={mn,m属于M,n属于N}.
已知直线上两点A(a,b)和B(c,d)的坐标,C(m,n)与A的距离为S,求C点坐标.
在△ABC中,角A,B,C的对边分别为a,b,c,设向量m=(a,c),n=(cosC,cosA) (1)若m∥n,c=
在一条直线上有A,B,C三点,M为AB的中点,N为BC的中点,若AB=m,BC=n,请你用含m,n的代数式表示线段MN的
m,n属于R,a,b为非零向量,且c=ma+nb,a,b有公共起点,若c,a,b终点共线,为什么M+N=1
设平面上不在一条直线上的三个点为O、A、B,证明当实数p、q满足1/p+1/q=1时,连结两个向量p0A,qOB(箭头打