已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2),且
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:09:57
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2),且当x大于1时f(x)大于0,f(2)=1,
1:求证f(x)是偶函数
2:求证f(x)在零到正无穷上是增函数
3:解不等式f(2x^2-1)小于2
1:求证f(x)是偶函数
2:求证f(x)在零到正无穷上是增函数
3:解不等式f(2x^2-1)小于2
1.
f(x1x2)=f(x1)+f(x2),令x2=1.于是
f(x1)=f(x1)+f(1),则f(1)=0
f(-1*-1)=2f(-1)=0,所以f(-1)=0
所以f(-x)=f(-1)+f(x)=f(x),所以是偶函数.
2.
任取x1>x2属于(0,无穷大).
f(1)=f(x)+f(1/x),-f(x)=f(1/x)
f(x1)-f(x2)=f(x1)+f(1/x2)=f(x1/x2)>0.所以是增函数.
3.
f(4)=f(2)+f(2)=2
因为f是偶函数并且在(0,无穷大)递增.
所以f(2x^2-1)
f(x1x2)=f(x1)+f(x2),令x2=1.于是
f(x1)=f(x1)+f(1),则f(1)=0
f(-1*-1)=2f(-1)=0,所以f(-1)=0
所以f(-x)=f(-1)+f(x)=f(x),所以是偶函数.
2.
任取x1>x2属于(0,无穷大).
f(1)=f(x)+f(1/x),-f(x)=f(1/x)
f(x1)-f(x2)=f(x1)+f(1/x2)=f(x1/x2)>0.所以是增函数.
3.
f(4)=f(2)+f(2)=2
因为f是偶函数并且在(0,无穷大)递增.
所以f(2x^2-1)
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2),且
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1、x2都有f(x1x2)=f(x1)+f(x2),且
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2)
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内任意x1、x2都有f(x1*x2)=f(x1)+f(x2)且当
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x 1,x2都有f(x1x2)=f(x1)+f(x2),
已知函数Fx的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1x2)=f(x1)+f(x2),且当x>1
已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2,都有f(x1*x2)=f(x1)+f(x2)
已知函数f(x)的定义域是:x不等于0 的一切实数,对定义域内的任意x1,x2 都有f(x1乘x2)=f(x1)加f(x
已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),且
证明单调性已知函数f(x)的定义域是x不等于0的一切实数,对定义域内的任意x1,x2,都有f(x1*x2)=f(x1)+
已知函数f(x)的定义域是x不等于0的一切实数,对于定义域内的任意x1 x2都有f(x1.x2)=f(x1)+f(x2)
已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x1,x2都有f(x1*x2)=f(x1)+f(x2).