关于奇偶性的问题设函数f(x)在负无穷到正无穷上满足f(2-x)=f(2+x),f(7-x)=f(7+x) 且在闭区间【
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 13:23:05
关于奇偶性的问题
设函数f(x)在负无穷到正无穷上满足f(2-x)=f(2+x),f(7-x)=f(7+x) 且在闭区间【0,7】只有f(1)=f(3)=0 求奇偶性
(2) 求方程f(x)=0 在【-2005,2005】根的个数 并证明
设函数f(x)在负无穷到正无穷上满足f(2-x)=f(2+x),f(7-x)=f(7+x) 且在闭区间【0,7】只有f(1)=f(3)=0 求奇偶性
(2) 求方程f(x)=0 在【-2005,2005】根的个数 并证明
(Ⅰ) 由于f(2-x)= f(2+x),f(7-x)= f(7+x)
可知f(x)的对称轴为x=2和x=7,即f(x)不是奇函数.
联立f(2-x)= f(2+x)
f(7-x)= f(7+x)
推得f(4-x)= f(14-x)= f(x)
即f(x)=f(x+10),T=10
又 f(1)= f(3)=0 ,而f(7)≠0
故函数为非奇非偶函数.
2.f(2-x)=f(2+x),得f(x)=f(4-x);
f(7-x)=f(7+x),得f(x)=f(14-x);
所以f(4-x)=f(14-x),得f(x)=f(x+10).
f(x)是周期函数,最小正周期为10.
当n为整数时,f(10n+1)=f(1)=0,f(10n+3)=f(3)=0,
其中-2005≤10n+1≤2005,-2005≤10n+3≤2005,
-200.6≤n≤200.4,-200.8≤n≤200.2,
这两个不等式分别有401个整数解,
即方程f(x)=0有802个根.
可知f(x)的对称轴为x=2和x=7,即f(x)不是奇函数.
联立f(2-x)= f(2+x)
f(7-x)= f(7+x)
推得f(4-x)= f(14-x)= f(x)
即f(x)=f(x+10),T=10
又 f(1)= f(3)=0 ,而f(7)≠0
故函数为非奇非偶函数.
2.f(2-x)=f(2+x),得f(x)=f(4-x);
f(7-x)=f(7+x),得f(x)=f(14-x);
所以f(4-x)=f(14-x),得f(x)=f(x+10).
f(x)是周期函数,最小正周期为10.
当n为整数时,f(10n+1)=f(1)=0,f(10n+3)=f(3)=0,
其中-2005≤10n+1≤2005,-2005≤10n+3≤2005,
-200.6≤n≤200.4,-200.8≤n≤200.2,
这两个不等式分别有401个整数解,
即方程f(x)=0有802个根.
关于奇偶性的问题设函数f(x)在负无穷到正无穷上满足f(2-x)=f(2+x),f(7-x)=f(7+x) 且在闭区间【
定义在R上的函数f(x)满足f(xy)=f(x)+f(y),且f(x)是区间(0,正无穷)上递增函数
定义在(负无穷,0)U(0,正无穷)上的函数f(x)满足f(xy)=f(x)f(y),判断函数f(x)的奇偶性
已知定义域为R的函数f(x)满足f(-x)=-f(4+x),且函数f(x)在区间(2,正无穷)上单调递增
已知函数f(x)的定义域为(负无穷,0)U(0,正无穷),且满足2f(x)+f(1/x)=x,是判断f(x)奇偶性,
设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x)
已知f(x)在负无穷到正无穷连续,且f(0)=2,设F(x)=∫f(x)dx从x平方到sinx的定积分,求F‘(0)解
设f(x)是定义在(0,+无穷)上的函数,且满足关系f(x)=2f(1-x)+x^2.
f(x) 在定义域(0,正无穷)上是增函数,满足f(2)=1,f(xy)=f(x)+f(y).求不等式f(x)+f(x-
设函数y=f(x)在区间(- 无穷,+ 无穷)上单调递增,且f(2)=1 ,则不等式f(x)
设函数f[x]是定义在(负无穷,正无穷)上的增函数,
已知函数f(x)=x的平方+4/x判断函数f(x)在区间(2到正无穷)上的单调性,并证明.