问一道高一立体几何题已知PA垂直于矩形ABCD所在平面,M N分别是AB PC的中点1 求证 MN垂直于CD2 若角PD
问一道高一立体几何题已知PA垂直于矩形ABCD所在平面,M N分别是AB PC的中点1 求证 MN垂直于CD2 若角PD
PA垂直于矩形ABCD所在平面,PA=PD,点M,N分别是AB,PC的中点.求证:MN⊥平面PCD
如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,求证:MN垂直于CD.
已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,求证:MN垂直于CD
已知PA垂直于矩形ABCD所在平面,M,N分别是AB,PC的中点,若∠PDA=45度,求证MN垂直平面PCD.
已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,求证MN‖平面PAD
已知PA垂直于矩形ABCD所在的平面,M、N分别是AB、PC的中点,若<PDA=45°,求证:MN⊥平面PCD
已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,角PDA为45度,求证:MN垂直面PCD
已知PA垂直矩形ABCD所在平面,M,N分别是AB,PC的中点.求证MN平行平面PAD
已知PA垂直矩形ABCD所在平面,M,N分别是AB,PC的终点.(1)求证:MN垂直CD;(2)若角PDA=45°,求证
如图,PA垂直于矩形ABCD所在平面,M,N分别是AB,PC中点,求证 MN∥平面PAD
如图直于矩形ABCD所在平面,PA=PD,点M,N分别是AB,PC的中点.求证:MN⊥平面PCD