如图,△ABC中,BD,CE为中线,延长BD到点F,使DF=BD,延长CE到点G

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:57:34
如图,△ABC中,BD,CE为中线,延长BD到点F,使DF=BD,延长CE到点G
如图,在△ABC中,已知∠ABC=∠ACB,BD,CE分别是∠ABC,∠ACB的平分线,请说明BD=CE

证明:在△ABD和△ACE中AB=AC且∠A是公共角∠ABD=∠ACD=1/2∠ABC=1/2∠ACB∴△ABD≌△ACE∴BD=CE

如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD,垂足为E,试猜测CE于BD的数

答案:BD=2CE分别延长BA、CE交与点F∵BE⊥CE∴∠BEC=∠BEF=90º又∵∠1=∠2,BE=BE∴RT⊿BEC≌RT⊿BEF,得到CE=EF∵∠DEC=∠DAB=90º

如图,△ABC.△ADE均为等边三角形,BD.CE交于点F.

1)证明:∵三角形ABC,ADE为等边三角形,∴∠CAB=∠DAE=60,∴∠CAB+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,∵AB=AC,AD=AE∴△BAD≌△CAE(SAS)∴BD=

已知:如图△ABC中,BD⊥AC ,CE⊥AB,BD,CE交于O点,且BD=CE.求证OB=OC

因为再问:������ADEC������0�����������ഹֱ��ֱ�ߣ�����ֳ�4�ݣ����������ֱ������ǡ������ֳɵ��IJ��ֺ�С����ǡ����ƴ�ɴ����

如图,在△ABC中,AB=AC,BD、CE分别为两腰上的中线,且BD⊥CE,则tan∠ABC=______.

如图,连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,依题意,得DE为△ABC的中位线,∴BC=4x,又∵四边形BCDE为等腰梯形,∴BF=12(BC-DE)=x,则FC=3x,∵BD⊥CE,∴

如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB,求证:BD=CE.

因为AB=AC所以∠ABC=∠ACB因为BD⊥AC,CE⊥AB所以∠BEC=∠CDB=90°因为BC=BC所以△BCE≌△CBD所以CE=BD

如图,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D、E.求证:BD=CE

证明:AB=AC:∠ABC=∠ACBBD⊥AC:∠BDC=90°CE⊥AB:∠CEB=90°=∠BDCBC是公共边所以:RT△BDC≌RT△CEB(角角边)所以:BD=CE

如图,在锐角三角形ABC中,BD垂直AC,CE垂直AB,垂足分别为D.E,BD与CE相交于点H

角BEC=角ADB,所以三角形ABD与三角形HBE相似角ABD=90-角BHE=90-角BAC故角BAC与角BHE相等

如图,BD、CE为△ABC的高,求证:∠AED=∠ACB.

证明:∵∠ADB=∠AEC=90°,∠A=∠A,∴△ABD∽△ACE.∴ADAE=ABAC.又∠A=∠A,∴△ADE∽△ABC.∴∠AED=∠ACB.

如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.若BD平分∠ABC.求证:CE=12

证明:延长CE、BA交于点F.∵CE⊥BD于E,∠BAC=90°,∴∠ABD=∠ACF.在△ABD与△ACF中,∠ABD=∠ACFAB=AC∠BAD=∠CAF=90°,∴△ABD≌△ACF(ASA),

已知:如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,BD与CE相交于点O,且BD=CE.求证:OB=OC

证明:∵CE⊥AB,BD⊥AC,∴△EBC和△DCB都是直角三角形,在Rt△EBC与Rt△DCB中BC=CBBD=CE,∴Rt△EBC≌Rt△DCB(HL),∴∠BCE=∠CBD,∴OB=OC.

如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2BD,N 是EA 的中点,求证

证明:(1)如图,取EC中点F,连接DF.∵EC⊥平面ABC,BD∥CE,得DB⊥平面ABC.∴DB⊥AB,EC⊥BC.∵BD∥CE,BD=12CE=FC,则四边形FCBD是矩形,∴DF⊥EC.又BA

如图,等腰三角形ABC中,AB=AC,BD、CE为两低底角平分线交于O,求证:①BD=CE;②OB=OC.

证明:∵AB=AC∴∠ABC=∠ACB∵BD平分∠ABC,CE平分∠ACB∴∠ABD=∠CBD=∠ABC/2,∠ACE=∠BCE=∠ACB/2∴∠ABD=∠ACE,∠CBD=∠BCE∵∠BAD=∠CA

如图,在三角形ABC中,BD,CE为三角形ABC的中线.延长BD到F,是DF=BD,延长CE到G,使EG=CE.

显然证明A,G,F共线,否则必然可做圆连接FC和CG因为AD=DC,FD=DB所以四边形FABC为平行四边形,AF∥BC又AE=EB,CE=EG,所以四边形AGBC为平行四边形,AG∥BC所以G,A,

如图,已知△ABC中,AB=CD,AC=BD,BE=CE,求证:

证明:AC=BDBE=CEAE=DE所以三角形ABE=三角形CDE(边边边)角A=角B

已知:如图,在△ABC中,AB=AC,BD、CE是高 求证:BD=CE

证明:△ABD和△ACE中∠ADB=∠AEC∠A=∠AAB=AC△ABD≌△ACE(AAS)BD=CE

已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.

证明:∵AB=AC,∴∠ABC=∠ACB,∵BD、CE分别为△ABC的高,∴∠BEC=∠BDC=90°,∴在△BEC和△CDB中∠BEC=∠BDC=90°∠ABC=∠ACBBC=BC,∴△BEC≌△C

已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:AO⊥BC.

延长AO交BC于点F证明:∵BD⊥AC,CE⊥AB∴∠BDA=∠CEA=90°∵∠BAD=∠CAE,AB=AC∴△ABD≌△ACE(A.A.S.)∴AD=AE∵AO=AO∴△ADO≌△AEO(H.L.