如图,正方形ABCD边长是3,连接AC,AE平分角CAD,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:08:27
图在哪里?再问: 再答:面积=5*5-4*4*1/2=17边长=根号下(1^2+4^2)=根号下17,所以是无理数
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
连结AD,扇形ABD的面积为(π*8^2)/4=16π平方厘米≈50.27平方厘米三角形ABD的面积为(8^2)/2=32平方厘米于是阴影部分面积≈2*(50.27-32)=2*18.27=36.54
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
如图,连BD、GE、FK,则DB∥GE∥FK,在梯形DBEG中,S△GED=S△GEB,同理可得,S△GEK=S△GEF,∴S△DEK=S△GED+S△GEK,=S△GEB+S△GEF,=S正方形BE
连AD,阴影面积=2(扇形CAD面积-△ACD面积)=2(16π-32)=32π-64
1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1
阴影面积为4.5,算式的答案是=2阴影面积计算:4×4+3×3-(4×7+4×1+3×3)÷2=4.5算式:原算式=(8+3)-(2+7)=2
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
1.5*5/2=12.5dm²2.4*6/2=12m²
阴影面积=大长方形-三个三角形=40-25/2-24/2-6/2=12.5平方厘米.
最下面的点应该是F吧阴影部分内边周长为AB+BE+CE+CD+DA=1+1+2πX0.25+1+1=0.5π+4阴影部分外边周长为EF+FG+GH+HK+EK=4πX0.25+6πX0.25+8πX0
(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相
如图,多面体分为三棱柱BCF-MNE(底面为BCF,高位EF)和四棱锥(底面AMND,高FH)体积=1/2BC*FH*EF+1/3AM*MN*FH=BC*FH(EF/2+AM/3)=3*2*(1/3+
楼主要自己画一下图啊,我以前画了好几次图上传的时候都不成功,浪费表情.其实画一下图就很明白了,数形结合是一种很重要的数学思想啊,尤其是几何,一定要多画图.因为AE平分∠BAC,EF⊥AC,所以BE=E
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4
设正方形的边长为n,P到BC的高为(根3)n/2角PCD=30度,D到AP的距离为n/2三角形PBC的面积:S1=n*[(根3)n/2]*(1/2)=(根3)n^2/4三角形PCD的面积:S2=2*(