如图点p是正方形abcd的对角线bd上一点pm垂直bc,pn垂直cd垂足分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:10:40
用假设:如果pc垂直PAB,则pc垂直pa.(1)连接ac,因为pa垂直ABCD(题目条件),则pa垂直ac.(2)这样,在三角形pac中出现2个90度角,很显然(1)(2)互为悖论.
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角
已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的中心,则四棱锥P-ABCD为正四棱锥
如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d[标签:papb,正方形,abcd]二、如图,已知点P为正方形ABCD内一点,连结PA、PB、PC.\x0d1.将△PAB绕点B顺时
AD平行于BC,而AD不在平面PBC上,BC在平面PBC上,所以AD平行平面PBC.PD垂直底面ABCD,AC在正方形ABCD上,所以PD垂直AC,又因为BD垂直AC,因此AC垂直平面PDB
作CH⊥AB则CH=√2/2∴S△BCE=1/2*1*√2/2=√2/4连接BP则S△BPE=1/2*1*PF,S△BPC=1/2*1*PG∴1/2*(PF+PG)=√2/4∴PF+PG=√2/2
∵△PBC的面积=√3/4△CDP的面积=1/4∴四边形BCDP的面积=(1+√3)/4∵△BCD的面积=1/2∴△BPD的面积=(1+√3)/4-1/2=(√3-1)/4
(1)∵四边形ABCD是正方形,E,F分别为BC,AD的中点∴DF=BE,DF∥BE∴四边形BEDF是平行四边形∴DE∥BF∴异面直线PB和DE所成的角为∠PBF∵BC⊥CD,PD⊥BC,PD与CD相
1.阴影部分为平行四边形,高为a'd,底为aa'=x,x(2-x)=1,x=1再问:那第二题呢?再答:没说是什么类型方程吗再问:方程是x^2-2bx+a-4b=0再答:2.根的判别式化简后b^2+4b
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
igxiong008是对的~
(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=π/4(a^2-b^2);(2)连接PP′,根据旋
把ΔPAB绕B旋转,使AB与AC重合,P点落在P',连PP'.易得等腰直角三角形PBP',PP'=4√2,∠PP'C=90,PC^2=(4√2)^2+2^2,PC=6
因为PD=DC,所以三角形PDC是等腰RT三角形.又因为E是PC中点,所以DE垂直PC.又因为BC垂直平面PDC(BC垂直DC且PD垂直BC),所以BC垂直DE.DE垂直PC,BC垂直DE,可得DE垂
1、过P做PG⊥AB交AB于G∵ABCD是正方形,∴∠ABC=∠DCB=90°∠ABD=∠DBC=45°∵PE⊥BC即∠PEB=90°PG⊥AB即∠PGB=90°∴四边形GBEP是矩形∴∠PBE(∠D
过O作ON⊥CD于N,连接OM,∴OM⊥BC,∴AB∥OM∥DC,∵AC为正方形ABCD对角线,∴∠NOC=∠NCO=∠MOC=∠MCO=45°,∵OM=ON,∴四边形ONCM为正方形,∴ON⊥OM,
连BD交AC于M,连PD易得BD⊥AC于M,△BPC≌△DPC有∠BPC=∠DPC又有∠BPC+∠CPE=∠CPE+∠PEF有∠BPC=∠DPC=∠PEF在△EFC中,∠FEC=∠FCE=45°∠DE
取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。
解题思路:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP\'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积