a c=2b,证明acos^2C 2 ccos^2A 2=3b 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:20:27
a c=2b,证明acos^2C 2 ccos^2A 2=3b 2
在三角形ABC中,已知角A,B,C所对的三条边分别是a,b,c,且b^2=ac 证明0

证:由余弦定理可得:cosB=(c^2+a^2-b^2)/2ac又b^2=ac所以cosB=(c^2+a^2-ac)/2ac=1/2(c/a+a/c-1)(把分子分开)=1/2(c/a+a/c)-1/

证明恒等式 三角比1. sin^2a+sin^2b-sin^2asin^2b+cos^2acos^2b=12. 2(1-

1.(sina)^2+(sinb)^2-(sinasinb)^2+(cosacosb)^2=(sina)^2-(sinasinb)^2+1-(cosb)^2+(cosacosb)^2=(sina)^2

在三角形ABC中,角A,B,C所对的边分别为a,b,c,若b-c=2acos(60°+C),求 角A

根据正弦定律得知a/sinA=b/sinB=c/sinC=kb-c=2acos(60°+C)ksinB-ksinC=2ksinAcos(60°+C)sinB-sinC=2sinAcos(60°+C)s

在三角形ABC中,角A,B,C所对的边分别为a,b,c,若b-c=2acos(60°+C),求 角A.

根据正弦定律得知a/sinA=b/sinB=c/sinC=kb-c=2acos(60°+C)ksinB-ksinC=2ksinAcos(60°+C)sinB-sinC=2sinAcos(60°+C)s

在△ABC中,角A、B、C所对的边分别为a、b、c.若b−c=2acos(π3+C)

由正弦定理asinA=bsinB=csinC=2R,得:sinB-sinC=2sinA•cos(60°+C),…(2 分)∵A+B+C=π,故有:sin(A+C)−sinC=sinAcosC

锐角三角形ABC中,a,b,c为角ABC所对的边,且(b-2c)cosA=a-2acos^2(B/2)

(b-2c)cosA=a-2acos^2(B/2)则(sinB-2sinC)cosA=sinA-sinA(1+cosB)则sinBcosA-2sinCcosA=sinA-sinA-sinAcosBsi

a²+b²+c²=2ab+2bc+2ac怎么证明a=b=c

(a+b)^2=a^2+b^2+2ab(b+c)^2=b^2+c^2+2bc(a+c)^2=a^2=c^2+2ac再把2ab,2ac,2bc表示出来再相加就可以了

已知锐角△ABC中,(b-2c)cosA=a-2acos²(B/2) 这个式子怎么处理?

利用Cos2A=2Cos²A-1(b-2c)cosA=a-a*(cosB+1)=-acosB正弦定理(2RsinB-4RsinC)cosA=-2RsinAcosBsinBcosA-2sinC

已知三角形ABC中,2B=A+C,b^2=ac,证明三角形ABC为等边三角形

A+B+C=180°3B=180°B=60°由余弦定理a^2+c^2-b^2=2accosBa^2+c^2-ac=2ac*1/2(a-c)^2=0a=c且B=60°可知三角形ABC为等边三角形

在△ABC中,若b-c=2acos(C+60°),

/>老师说的没错,o(∩_∩)o...哈哈!写到“sinB-sinC=sinAcosC-√3sinAsinC”的时候,因为sinB=sin(A+C)=sinAcosC+cosAsinC所以cosAsi

在三角形ABC中,acos²C/2+ccos²A/2=3/2b,求证;a,b,c,成等差数列

acos^2C/2+ccos^2A/2=3b/2a*(cosC+1)/2+c*(cosA+1)/2=3b/2acosC+a+ccosA+c=3bacosC+a+ccosA+c=2b+b,a/sinA=

在三角形ABC中,角ABC所对的边分别是abc,若b-c=2acos(3分之Л+C)求角A

明白了,是偶看错了刚才.A=2π/3因为b-c=2acos(π/3+C)所以sinB-sinC=2sinA(1/2cosC-√3/2sinC)所以sinB-sinC=sinAcosC-√3sinAsi

高中三角证明题在三角形ABC中,若acos²(C/2)+ccos²(A/2)=3b/2,求证:a+c

cos²(c/2)=(1+cosC)/2cos²(A/2)=(1+cosA)/2就有(a+c)/2+1/2(acosC+ccosA)=3b/2再用余弦定理把cos转化就出来了.

证明数学充要条件证明:三角形ABC是等边三角形的充要条件是a^2+b^2+c^2=ab+ac+bc a,b,c是三角形的

充分:2(a^2+b^2+c^2)-2(ab+ac+bc)=(a-b)^2+(b-c)^2+(c-a)^2=0所以:a=b=c必要:a=b=c,所以有:a^2+b^2+c^2=ab+ac+bc

在三角形ABC中求证 aCOS A+bCOS B+cCOS C=2aSIN B SIN C

正弦定理知等价于证sinacosa+sinbcosb+sinccosc=2sinasinbsin(a+b)=2sin^2asinbcosb+2sin^2bsinacosa移项用二倍角公式等价于cos2

1、在三角形ABC中若acos(平方)C/2+ccos(平方)A/2=3b/2,则求证a+c=2b

acos^2C/2+ccos^2A/2=3b/2a*(cosC+1)/2+c*(cosA+1)/2=3b/2acosC+a+ccosA+c=3bacosC+a+ccosA+c=2b+b,a/sinA=

在三角形ABC中,acos^2(C/2)+ccos^2(A/2)=3/2b,求证:a,b,c成等差数列

acos^2(C/2)+ccos^2(A/2)=3/2b1/2a(2cos^2(C/2)-1)+1/2a+1/2c(2cos^2(A/2)-1)+1/2c=3/2b1/2acosC+1/2ccosA+

数学证明题求证 (ac-bd)^2>=(a^2-b^2)(c^2-d^2)

(ac-bd)^2=(ac)^2-2abcd+(bd)^2(1)(a^2-b^2)(c^2-d^2)=(ac)^2-(ad)^2-(bc)^2+(bd)^2(2)(1)-(2)-2abcd+(ad)^

在三角形ABC中,若acos(C/2)+ccoc^2(A/2)=3b/2,则求证:a+c=2b

a[2cos²(C/2)]+c[2cos²(A/2)]=3b--->a(1+cosC)+c(1+cosA)=3b--->a(a²+b²-c²+2ab)