曲面z^2-xy=1到原点最短的距离d等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:23:23
曲面z^2-xy=1到原点最短的距离d等于
曲面z=x+xy-1在点(1,1,1)处的法向量为 .

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

求曲面z∧2-xy=1上到原点最近的点

答案是1相当于有一个球面:x^2+y^2+z^2=R^2;与z∧2-xy=1相切,求最小的R消去z,得R^2=x^2+y^2+xy+1;相当于求g=x^2+y^2+xy+1的最小值,连续可导,求偏导得

z=xy是什么曲面

可以先在二维坐标中作xy=1的图像,也就是y=1/x.这个图像很容易的,就是在一三象限的反弧线,作好后再扩展到三维坐标系中,就是把线扩展成面,就是两个反弧面.图形就是两个关于Z轴对称的弧面,沿Z轴看就

求原点到曲面z^2=xy+x-y+4的最短距离,

因为上式是一个空间曲面,要求原点到曲面最短距离,可以想象成有个球体与这个曲面相切,球的半径r就是最短距离所以设x^2+y^2+z^2=r^2球与曲面相交即x^2+y^2+xy+x-y+4=r^2进行配

曲面e^(2z)-z+xy=2在点(1,1,0)处的法向量为

(1,1,1)F(X,y,z)=e^(2z)-z+xy-2n=(F(对x求导),F(对y求导),F(对z求导))F(对x求导)=yF(对y求导)=xF(对z求导)=2e^(2z)-1代入得n=(1,1

求曲面z=x2+xy+zy2在(1,-1,2)处切平面方程.

z=x²+xy+zy²设f(x,y,z)=x²+xy+(y²-1)z在(1,-1,2)处的切平面方向导数是∂f/∂x=2x+y=2x1-

求曲面e^x-z+xy=3在点(2,1,0)处的切平面及法线方程.

∵e^x-z+xy=3==>z=e^x+xy-3==>αz/αx│(2,1,0)=e²+1,αz/αy│(2,1,0)=2∴在点(2,1,0)处切平面的法向量是(e²+1,2,-1

曲面z=xy在点(1,2,2)处的法向量n

令F(x,y,z)=xy-z,则Fx′=y,Fy′=x,Fz′=-1.从而,曲面在P(1,2,2)处的法向量为:n=(Fx′,Fy′,Fz′)|P=(2,1,-1),切平面方程为:2(x-1)+(y-

求原点到曲面在z^2=xy+x-y+4的最短距离

很简单!建立方程L(x,y,z,c)=(x^2+y^2+z^2)^1/2+c(z^2-xy-x+y-4)然后分别对L求偏导,最后求的xyzc,最后再代入方程L就是说球的结果!

求曲面xy-z^2+1=0上离原点最近的点

xy-z^2+1=0=>z^2=xy+1x^2+y^2+z^2=x^2+y^2+xy+1=(x+y/2)^2+3y^2/4+1>=1当且仅当x=y=0,z=正负1的时候成立,因此,离原点最近的点是(0

求原点到曲面(x-y)^2-z^2=1的最短距离.

貌似是根号2/2思路是对的呀分别对x,y,z偏导得x/根号(x^2+y^2+z^2)+2к(x-y)=0y/根号(x^2+y^2+z^2)-2к(x-y)=0z/根号x^2+y^2+z^2+2кz=0

曲面z=y+xy-2在点(1,1,0)处的法向量为?

u=y+xy-2-zau/ax=yau/ay=1+xau/az=-1n=(y,1+x,1)=(1,2,-1)

曲面x^2+y^2-z^2=1 到原点的最短的距离是

这个题目比较简单,不用偏导数也能得出答案的.曲面满足x^2+y^2=1+z^2点(x,y,z)到原点O的距离d满足d^2=x^2+y^2+z^2=1+2z^2因为z可以取到0,所以d^2=1+2z^2

平面x+2y+3z=0到曲面z=x^2+2y的最短距离怎么求

可以转化为最优化问题(在曲面上任取一点,求点到平面距离最小),用拉格朗日乘数法d=|x0+2y0+3z0|/√(1+2²+3²)=|x0+2y0+3z0|/√14目标函数:minf

曲面e*z-z+xy=3在点(2、1、10)处的切平面方程

写成F(x,y,z)=0的形式,然后分别对x,y,z求导~得到法向量先求导数dF/dx=y,dF/dy=x,dF/dz=e-1;代直得到法向量(1,2,e-1)由此得到切平面:(x-2)+2(y-1)

求曲面xyz=1上找一点使其到原点(0,0,0)的距离最短

用均值不等式,x^2+y^2+z^2>=3[x^2*y^2*z^2]^(1/3)=3所以最小值是根号3当|x|=|y|=|z|=1时取得

求原点(0.0.0) 到(x-y)^2-z^2=1的最短距离

由对称性,原题与(x+y)^2-z^2=1的条件同解,同样因为这里可以假设x,y,z均不为负,所以显然有x=y=0.5,z=0时x^2+y^2+z^2=0.5取最小值,于是原题答案,最小值为2分之根号

曲面z=x+xy-1在点(1,1,1)处的法向量为

令f(x,y,z)=x+xy-z-1,则f'x(x,y,z)=1+y=2,f'y(x,y,z)=x=1,f'z(x,y,z)=-1,因此,在点(1,1,1)处的法向量为(2,1,-1).

曲面sinz-z+xy=1在点(2,-1,0)出的法线方程

令F(x,y,z)=sinz-z+xy-1则偏导数:Fx=yFy=xFz=cosz-1所以曲面sinz-z+xy=1在(2,-1,0)的法向量是:(-1,2,0)