求锥面z=根号下(x^2 y^2)被柱面z^2=2x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:12:15
求锥面z=根号下(x^2 y^2)被柱面z^2=2x
求锥面z= √x^2+y^ 2与半球面 z= √ 1-x^2-y^ 2所围成的立体的体积

两个办法:一个是用积分,一个是用立体角①用积分用球面坐标,设半径r与z轴夹角为φ,r在XOY平面上投影与x轴夹角为θ则积分区域为:0≤r≤1,0≤φ≤π/4,0≤θ≤2π两曲面所围成立体体积为V=∫d

求∫∫∫sinzdv,其中Ω由锥面z=根号(x^2+y^2)和平面y=π围成

本题适合用截面法来计算用竖坐标为z的平面来截立体,得到的截面方程为D:x^2+y^2=z^2,截面为圆,其面积为:πz^2∫∫∫sinzdv=∫sinz(∫∫dxdy)dz中间那个二重积分的积分区域为

求由锥面z=k/R *√x²+y²(这是根号下)z=0及圆柱面x²+y²=R&#

对于z=F(X,Y),A=∫∫DDA=∫∫D√[1+(FX)2+(Fy)的表面积2]DXDY锥面Z=√(X2+Y2)是圆柱形表面X2+Y2=2倍的切削积分区域D为:0≤X≤2,-√(2X-X2)1,0

求锥面z=根号(x^2+y^2)被圆柱面x^2+y^2=2x割下部分的曲面面积(是曲面积分),

对于z=f(x,y),曲面面积为A=∫∫DdA=∫∫D√[1+(əf/əx)²+(əf/əy)²]dxdy锥面z=√(x²+y&#

曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=

可以直接使用高斯公式:没问题的话麻烦采纳吧,/

球面x^2+y^2+z^2=50被锥面x^2+y^2=z^2所截曲线方程是什么?怎么求?

解这两个方程所组成的方程组即可.两式相减:z²=50-z²,得:z=5或-5故x²+y²=25因此曲线是两个半径为5的圆.

计算二重积分∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-y)dxdy 其中E 为锥面z=根号下(x^2

补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-

2(根号下x+根号下y-1+根号下z-2)=x+y+z,求x,y,z的值

经配方得(根号下x-1)²+(根号下y-1-1)²+(根号下z-2-1)²=0∴x=y-1=z-2=0∴x=0,y=1,z=2

设x+y^2+z=ln根号(x+y^2+z),求аz/аx (x+y^2+z)在根号下,

两边取e的指数:e^(x+y²+z)=(x+y²+z)/2对x求导:[e^(x+y²+z)]*(1+ðz/ðx)=(1+ðz/ðx

已知x、y、z满足:根号下3x-2y-4+根号下2x-7y+3=根号下2x-4y-z·根号下z-2x+4y,求z的值.

∵2x-4y-z≥0z-2x+4y≥0∴2x-4y-z=0∴√﹙3x-2y-4﹚+√﹙2x-7y+3﹚=0则有:3x-2y-4=02x-7y+3=0解得:x=2y=1.∴z-2x+4y=0z=2x-4

求锥面z=根号下x^2+y^2及旋转剖物面z=2-x^2-y^2所围成立体的体积

http://hi.baidu.com/522597089/album/item/d33979029fbb74761c9583ac.html#