设A,B为n阶方阵,证明Bt.AB也是对称阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:29:59
设A,B为n阶方阵,证明Bt.AB也是对称阵
设A与B皆为n阶方阵,证明,如果AB=0那么秩A=秩B

见http://zhidao.baidu.com/question/449580128.html

设A,B为n阶方阵,证明:如果A*B=0 则R(A)+R(B)

设I为单位矩阵情形一:A=0时,R(A)=0,所以R(A)+R(B)=R(B)=R(IB)

设A为n阶方阵,B为N×S矩阵,且r(B)=n.证明若AB=0则A=0

若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0

线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.

(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转

设A,B为n阶方阵,且A为对称阵,试证明BTAB也是对称阵.

证明某阵A为对称阵,只需要有AT=A(BTAB)T=BTAT(BT)T=BTATB又A为对称阵AT=A代入得BTATB=BTAB所以BTAB为对称阵

设A为n阶方阵,证明当秩(A)

这个很简单啊,r(A)

设A,B为n阶方阵,且AB=0,证明:R(A)+R(B)小于等于n

因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)

A、B喂n阶方阵,设A~B,证明:A^k~B^k(k为正整数)

因为A~B设B=PAP-1则B^k=(PAP-1)^k=(PAP-1)(PAP-1)...(PAP-1)=PA(P-1P)A(P-1P)...AP-1=P(A^K)P-1所以A^k~B^k

设A,B为n阶单位方阵,I为n阶单位方阵,B及I+AB可逆,证明I+BA也可逆

因为I+AB可逆,所以(I+AB)(I+AB)^(-1)=I,推出(B^(-1)B+AB)(B^(-1)B+AB)^(-1)=I,(B^(-1)+A)BB^(-1)(B^(-1)+A)^(-1)=I也

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆

因为B^2=B,所以B^2-B-2I=-2I,即(B+I)(B-2I)=-2I,也就是(B+I)(B-2I/-2)=I.所以A(B-2I/-2)=I,根据定义AB=BA=E,所以A可逆.也可以这么做的

设A,B为N阶方阵,若A可逆,证明AB与BA相似

因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B

设A和B为n阶方阵,A^2B+AB^2=E 证明A+B可逆

A^2B+AB^2=E即AAB+ABB=E所以A(A+B)B=E所以A可逆,B可逆所以A(A+B)=B^-1A+B=A^-1B^-1所以A+B可逆且(A+B)^-1=BA

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设A B都是n阶正交方阵,证明:

A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!