(1 1 n)^n在n等于正无穷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:07:06
(1 1 n)^n在n等于正无穷
(1+x/n)的n次方在n趋于正无穷的极限

当x=0时,lim(n->∞)[(1+x/n)^n]=lim(n->∞)(1)=1;当x≠0时,lim(n->∞)[(1+x/n)^n]=lim(n->∞){[(1+x/n)^(n/x)]^x}=e^

证明函数级数(-1)^n/(x+2^n)在(-2,正无穷)一致收敛

可以去掉第一项,然后控制级数能取(-1)^n/(2^n-2),或者直接用Dirichlet判别法

证明n趋向无穷时,5n^2/(7n-n^2)的极限等于-5

lim5n^2/(7n-n^2)上下同除n^2=lim(5/(7/n-1))=5/(lim7/n-1)=5/(0-1)=-5

lim n到正无穷 (3n+1)/4n-1等于3/4用数列极限的定义证明

设{an}中,an=(3n+1)/(4n-1),则|an-3/4|=|(3n+1)/(4n-1)-3/4|=|7/[4*(4n-1)]|7/(16E)+1/4,所以取N=[7/(16E)+1/4]("

求极限根号(n^2+1)-根号(n^2-2n),n→正无穷

1、这类极限是无穷大减无穷大型不定式;2、固定的解法是三步曲:   A、分子有理化;   B、化无穷大运算成无穷小运算; &nbs

|Xn|在n趋于无穷时极限为0,则Xn在n趋于无穷时也等于0,为什么?

结论肯定是对的因为|Xn|在n趋于无穷时极限为0,表示正的和负的方向都趋向于0当然Xn在n趋于无穷时也趋向于0,则极限就是0你可以借助下面的图像帮助理解

计算(1+2的n次方+3的n次方)整体的n分之一在n趋于正无穷时的极限

e的n分之ln(1+...)再答:e��n��֮ln��1+...��再答:�η���������ش﷨�

幂级数求和,:∑(n从1到正无穷) n*(n+2)*x^n

∑(n从1到正无穷)n(n+2)x^n=x∑(n从1到正无穷)n(n+2)x^(n-1)=x∑(n从1到正无穷)[(n+2)x^n]′=x[∑(n从1到正无穷)(n+2)x^n]′∑(n从1到正无穷)

求幂级数n(n+1)x^n在其收敛区间(-1,1)内的和函数,n属于(1,正无穷).

结论:2x/(x-1)^3再问:感激啊,怎么算的啊?再答:1.原式=x*(∑x^(n+1))''其中''指二阶导数2.∑x^(n+1)的和函数是x^2/(1-x)3.求x^2/(1-x)的二阶导数4.

关于n的阶乘和n的n次幂相关的 求lim(n到正无穷)n^n/(2n!)和n!/(n^n)

0∴由夹逼定理,lim(n->∞)n^n/(2n!)=00∴由夹逼定理,lim(n->∞)n!/n^n=0

ln(1+1/n)^n的极限(n->正无穷)为什么等于lne

由重要极限二知道:n->∞时,lim(1+1/n)^n=e(这个的证明过程较繁琐高数的教科书上应该都有证明过程)所以n->∞时,lim(ln(1+1/n)^n)=lne

求pi^n-e^n在n趋向正无穷的极限,

π^n-e^n=π^n(1-e^n/π^n)由于lim(1-e^n/π^n)=1(n趋于无穷大)而π^n趋于无穷大,所以π^n-e^n在n趋向正无穷的极限为无穷大.

ln(2n^2-n+1)-2ln n.当n趋于正无穷是的极限

ln(2n^2-n+1)-2lnn=ln((2n^2-n+1)/n^2)=ln(2-1/n+1/n^2)--->2答案:2

n趋于正无穷求极限n^2*ln[n*sin(1/n)]

关于n的数列极限问题,可以转化为函数极限:n^2*ln[n*sin(1/n)]=【ln{[sin(1/n)]/(1/n)}】/[(1/n)^2]当n→+∞时,1/n→0,所以用x代替式中的1/n得到:

n趋向正无穷 求极限n*[e^2-(1+1/n)^2n]

n*[e^2-(1+1/n)^2n]=n*(1+1/n)^2n*[e^2/(1+1/n)^2n-1]~e^2*n*ln[e^2/(1+1/n)^2n](等价无穷小因子替换)=e^2*n*[2-2n*l

当n趋向于无穷,n的阶乘除以n的n次方等于多少

请写一下过程回答:n的阶乘等于1一直乘到n,n的n次方等于n个n相乘,这个题就相当于是1/n乘2/n……乘1,当n趋近于无穷的时候1/n等于0,.当然,你也可以用诺必达法则做

求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷

((1+1/n-1/n^2)^(1/(1/n-1/n^2)))^(1/n-1/n^2)n=e^1-1/n=e

n趋于无穷时,n+1的阶乘等于多少?

n+1的阶乘就是(n+1)!=(n+1)*n*(n-1)*(n-2)*.*3*2*1