作业帮 > 数学 > 作业

f(x)=xe^x+ax^2+bx 在x=0和x=-1时都取得极值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 21:11:43
f(x)=xe^x+ax^2+bx 在x=0和x=-1时都取得极值
1.求a和b的值
2.若存在实数x属于〔1,2〕,使得不等式f(x)《二分之一x^2+(t-1)x成立,求实数t的取值范围;
一楼解错了 二楼第一个问对了下面的不详细 分给谁呢?
f(x)=xe^x+ax^2+bx 在x=0和x=-1时都取得极值
1.f'(x)=(x+1)e^x+2ax+b
由已知f'(0)=1,f'(-1)=0
代入上式得1+b=0,b-2a=0,即a=-1/2,b=-1
2.f(x)≤1/2x^2+(t-1)x,1≤x≤2
即xe^x-1/2x^2-x ≤1/2x^2+(t-1)x
即xe^x-x^2≤tx
又x>0,所以e^x-x≤t
令g(x)=e^x-x,则g'(x)=e^x-1
当1≤x≤2时,g'(x)>0
所以g(x)在[1,2]上单调递增,在x=2时g(x)取最大值e^2-1
因为1≤x≤2时,e^x-x≤t,所以t的取值范围是t≥e^2-1