已知函数f x=lg{(a的平方-1)x的平方 (a 1)x 1}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:04:48
2(x+根号x平方+1)大于等于0即可再一步一步拆根式注意根式内大于等于0但是整个函数的真数必须大于0.奇偶性的话看f(x)与f(-x)的关系相加为零为奇函数相等为偶函数.其余情况为非奇非偶函数.单调
1.f(x)=lg(1+x)-lg(1-x)=lg(1+x)/(1-x)f(-x)=lg(1-x)-lg(1+x)=lg(1-x)/(1+x)=-lg(1+x)/(1-x)=-f(x)所以是奇函数2.
∵fx=lg(x)在定义域内单调递增∴若fx=lg(x^2-2ax-a)在(-∞,-3)上单调递减,则x^2-2ax-a在(-∞,-3)上单调递减又∵gx=x^2-2ax-a开口向上 &nb
零和负数无对数:(a+1)x>0a=-1时无解;a<-1时,定义域x<0;a>-1时,定义域x>0
令g(x)=ax^2+2x+11f(x)值域为R,表明g(x)的值域包含所有正值.因此有a>=0.当a>0时,其最小值应不大于0,即:delta=4-44a>=0,得a
定义域1+x>0x>-1所以-10则lg(1+x)>0=lg11+x>1所以0
ax^2+2x+1大于0恒成立当a0时有:Δ=4-4a0)得到a>1此时f(x)=lg(ax^2+2x+1)当x=-1/a时,取得最小值(对称轴上)f(x)min=f(-1/a)=1-1/a所以值域为
解由fx=lg(ax^2-2x+1)的值域为R,知真数ax^2-2x+1能取完所有正数,故当a=0时,真数为-2x+1能取完所有正数,当a≠0时,真数ax^2-2x+1能取完所有正数知a>0且Δ≥0即
由已知函数f(x)=lnx,定义域x>0;函数g(x)=ax2/2+bx,若a=-2,那么g(x)=-x2+bx;所以函数h(x)=f(x)–g(x)=lnx–(-x2+bx)=lnx+x2–bx,定
解1由题知6-2x>0即x<3即A={x/x<3}B={x/x≥-1}故A∩B={x/-1≤x<3}2由B∪C=B知C是B的子集由C={x丨m-1≤x≤m+2}B={x/x≥-1}知m-1≥-1即m≥
fx=1/2x^2+lnx(a∈R,a≠0)f'x=x+1/x当x>0f'x>0当x
函数f(x)的最大值37,最小值1储备知识:对于二次函数y=ax²+bx+c(a>0),当m≤x≤n时1)若m≤-b/2a≤n【直线x=-b/2a是二次函数y=ax²+bx+c的对
f(x)+f(-x)=lg根号下4x^2+b+2x+lg根号下4x^2+b-2x=lgb=0b=1
由题设知,f(x)+f(-x)=0.====>lg[√(x^2+a)-x]+lg[√(x^2+a)+x]=0.===>lg{[√(x^2+a)-x][√(x^2+a)+x]}=0.===>[√(x^2
定义域满足a^x-b^x>0,即(a/b)^x>1,因a/b>1,故有x>0即定义域为x>0因为a^x递增,b^x递减,所以a^x-b^x递增因此f(x)关于x递增当x>1时,有f(x)>f(1)=l
希望对你有所帮助 再问:请问当a属于(0,e)是怎样证明e平方x的平方-2分之5x大于(x+1)lnx呢?再答:我刚才还以为你 就问2问呢 嘿嘿 加油~~若可以
cx=|fx|-gx=|x^2-1|-a|x-1|=0当x>1,a>2当0≤x
先看该函数的定义域,为x>1或x<-1,关于y轴对称,讨论f(x)和f(-x)的关系,得到该函数为偶函数,、lgx²-1<1,则lgx²-1<lg10,因为底数为10,所以x&su
解f(x)=-x²+4x+a=-(x²-4x)+a=-(x²-4x+4)+4+a=-(x-2)²+4+a对称轴为x=2,开口向下∴在x∈[0.1]上,f(x)是